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On the Dynamics of the Ice Sheets 

P. HALFAR 

Max-Planck-lnstitut fiir Meteorologie, Hamburg, Federal Republic of Germany 

A similarity solution of the equation that describes the time evolution of an ice sheet is obtained by 
separation of variables. It describes the motion of an initial /• function ice sheet distribution and is 
asymptotically stable with respect to all perturbations that leave the total volume invariant. Homogeneity 
in one horizontal direction is assumed. 

1. INTRODUCTION 

On time scales larger than 103 years, the motion of the ice 
sheets plays an important role in the climatic system of the 
earth. To explain these variations, two mechanisms have 
mainly been discussed. One is the external forcing via the or- 
bital parameters of the earth [Hays et al., 1976]. There is good 
evidence that the obliquity of the earth's axis and the pre- 
cession of the equinoxes influence the ice sheet variations. 
However, a physical connection between the large 105 years 
peak in the climatic spectrum and the period of eccentricity of 
the earth's orbit remains doubtful [Rooth et al., 1978]. The 
other mechanism is a feedback between the variables of the 

climatic system [Irnbrie and Irnbrie, 1980; Kdllen et al., 1979; 
Oerlemans, 1979]. The aim of such feedback models is to find 
an eigenmode with a characteristic time scale of 105 years. 

It is important for any model of ice sheet dynamics to mas- 
ter the simplest case when external forcing and feedback 
mechanisms are absent. Therefore, I shall consider only that 
part of the motion of an ice sheet that is due to the flow law of 
the ice. A two-dimensional case is treated (length and height). 
The ice is assumed to rest on a fiat ground where the velocities 
vanish. It has not yet been realized that the nonlinear equa- 
tion, which describes in the small slope approximation the 
time evolution of the surface [Mahaffy, 1976], has a similarity 
solution of finite extent that grows in length and shrinks in 
height. By linearizing the equation of motion around the simi- 
larity solution, any deviation from this solution which leaves 
the volume invariant can be shown to fade away in the course 
of time (i.e., this solution is asymptotically stable). The eigen- 
values and eigenfunctions of the equation of motion that are 
linearized in the deviation are represented through standard 
analytical expressions. The result suggests that any solution of 
the equation of motion approaches during its time evolution a 
similarity solution. 

The linearization around a given solution fits into the gen- 
eral scheme developed by Nye [Paterson, 1969] and Weertman 
[1958] in which the authors consider expansions around solu- 
tions, which are in equilibrium with sources and sinks, but the 
sawtooth pattern of isotopic records [Rooth et al., 1978] in- 
dicates that the ice age ice sheets were far from equilibrium. 

I hope that the similarity solution will also be useful to de- 
scribe some of the more realistic cases when accumulation and 

ablation change the volume, sliding occurs on the bed, tem- 
perature varies in space and time, or ice-ocean interaction 
takes place along the marine margins of the ice sheet. If the 
internal friction of the ice that is responsible for the asymp- 
totic stability of the similarity solution dominates some of 
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these effects, then an expansion around similarity solutions 
might be valuable. As this task goes beyond the present paper, 
let me sketch how it could be done. 

The above-mentioned more realistic properties add as per- 
turbations to the equation of motion. At every time a solution 
of this perturbed equation can be approximated through a 
similarity solution by adjustment of volume, center of mass 
and length. The remaining difference is expanded in terms of 
the eigenfunctions of the unperturbed and in the deviations 
from this similarity solution linearized equation of motion. 
The three lowest modes do not occur, for these degrees of 
freedom are already fixed by adjustment of volume, center of 
mass, and length (cf. section 7). The perturbed equation is 
then linearized in the amplitudes of the higher eigenfunctions 
and yields a first-order differential equation for the time evo- 
lution of volume, center of mass, length, and these ampli- 
tudes. If the damping of these amplitudes, which is already 
there in the unperturbed case, is large' compared with the per- 
turbations, then they will remain small, the first-order expan- 
sion remains valid, and, therefore, the procedure is self-consis- 
tent. To repeat the essential assumption, the damping of 
deviations from the shapes of the similarity solutions that is 
caused by internal friction limits their growth, which is due to 
the perturbations. 

In this way the model could consider all degrees of freedom 
of an ice sheet, and only a few of the lowest ones must be 
taken into account owing to the stronger damping of the 
higher modes that would save a lot of computer time. On the 
other hand, there would be more than 1 degree of freedom, 
which is necessary to build feedback models with cyclic mo- 
tions. This would be a difference to the Weertman [1964] 
model, which has only the length as degree of freedom. 

2. THE MODEL 

Consider a two-dimensional ice sheet resting on a fiat 
ground (Figure 1). Its motion is determined by Glen's flow 
law of the ice that connects the second invariants of the devia- 

toric stress tensor and the strain-rate tensor [Nye, 1957]: 

• _- (1) 

and by the boundary condition of vanishing velocity on the 
bed. Neglecting longitudinal stress gradients, the vertically in- 
tegrated equation of motion becomes in the small slope ap- 
proximation [Mahaffy, 1976] 

Oh 2 

Ot (n + 2) (2) 
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11066 HALFAR: ICE-SHEET DYNAMICS 

x 

Fig. 1. Surface height versus horizontal distance of an ice cap. 

where p is the density of the ice and g the acceleration of grav- 
ity. This equation agrees up to lowest order in the slope 
with Nye's [1952] results. 

Introducing dimensionless variables 

t-•t' T 

x -• x' L (3) 
h--> h'L 

where the time and length scales are 

1 
L[m] -- •- pg [bar. m -•] 11 (4) 

n+2 
-- A n [bar• ß yr] (5) r[yr] 2 

the equation (2) becomes 

Oh 0 Oh Oh hn+2 
O•-= O•' •xx •xx I (6) 

Typical values for A n [bar• ß yr], which is also denoted by •-• 
in the literature [Andrews, 1975], are 

Temperature, øC A n [bar• ß yr] 

0 6.06 

-5 18.5 

-10 58.8 

-20 666 

The exponent n in Glen's law is about 3. 
In the neighborhood of the ice edge (6) is not valid as the 

surface slope becomes large. In the following this effect is ne- 
glected. If this neighborhood is small compared with the ex- 
tension of the ice sheet, then the corresponding error should 
remain small too. The behavior of a glacier near its edge has 
been considered by Nye [1967]. 

3. A SIMILARITY ICE CAP SOLUTION 

To solve (6), I make the separation assumption 

[x/(t) 
h(t, x) -- •--Ff (t)g [ •_.• (7) 

where V is the total volume. If g is a solution of finite extent, 
then it is always possible to choose f(t) and a such that 

g(0) -- I g(1) -- 0 (8) 

Substituting (7) in (6), the separated equations become 

f'(t) 
f3n+3(t) 

-- (aV) n/2 d/d•(g'O1)lg'01)l n-' = c (9) 

where c is a constant and 

xf(t) (10) 

The solution of (9) which satisfies (8) is 

g(•) -- (1 -I•tlCa+n)/") "/<2n+') I•1 < 1 (11) 

-- (12) Rt)= *ø! 
1 2n + 1 (aD_•/2 (13) ß o=(3n+2) n+l 

+ + + + 1)(2 + 1)) (14) a = 2n F(n/(n + 1)) F((3n + 1)/(2n + 1)) 
The mean•g of (7) and (10) is a true dependent rescal•g 

of height and length with scal•g factor m f(O, respectively, m 
f-•(t) such that the rescaled solution g(•) extends from • = -1 
to • • + 1 and has maxtal height g(0) = 1. Figure 2 shows a 
plot of this rescaled solution for the case n = 3. 

In the perfect plasticity lmit n • m, Orowan's solution 
[Weenman, 1964] is obta•ed from the s•flarity solution. 
With the notation of Weenman [1964] the flow law (1) reads 

(15) 

that •, 

A n---- 70 n' C -1 (16) 

Calculating the limit of f(t) at a fixed time, one has to consider 
(3) and (5). Therefore, the correct limit foo is given by 

foo TM lim f{½)l (17) n--• oo t fixed 

and equal to (cf. (5), (12), (13), (16)) 

foo = (2r0 [bar]) •/3 (aoo F) -•/6 (18) 
where 

3 
aoo-- lira a= - (19) n--,oo 4 

i 

-1.20 

- 

i _ i__ i i i • i i i I 
-0.80 -0. •iO O. O0 O. qO O. 80 1.20 

Fig. 2. g0/) versus •/for n = 3. 
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HALFAR: ICE-SHEET DYNAMICS 11067 

setting 1 = •1 = R foo/ • V yields the haft width 

(20) 

and considering (7) and (8) yields the maximal height 

H= xf•-•V' foo (21) 

Eliminating aoo V and foo from (18), (20), and (21) and reintro- 
ducing the true height and half width (cf. (3) and (4)) 

H • H. pg[bar] 
(22) 

R --• R' pg[bar] 

the relation 

H• 2%R} I/: (23) Pg 

between true height H and true half width R is obtained. The 
surface profile (11) becomes parabolic. 

goo01) = lira gO1) = (1 -I•1) (24) 

The last two equations agree with Orowan's result [Weertman, 
1964]. 

4. A CHARACTERISTIC TIME SCALE 

Consider an ice mass of volume V that is concentrated at 

one point in space. The time t, which this ice mass needs to in- 
crease its length to a value of 2R, can be calculated from (10) 
and (12)-(14) by putting 1 -- •/= Rf(O/xf•v to 

I 2n + 1)" R 3n+2 t= (3n + 2) n + 1 (aI0 '"+l (25) 
Assume a volume that iS equivalent to a cap of length 2R = 
1000 km and height 1 km. By using (3)-(5) for n = 3 and tem- 
perature = 0 ø C leads to a time of 614000 years. 

This result is not in contradiction to experimental data as 
(25) is very sensitive tO changes in V and R (e.g., in the case 
n = 3 a change of a factor of 2 in the length at constant vol- 
ume changes this time by a factor of 2" = 2048). It is there- 
fore difficult to relate these time scales with time scales of past 
ice sheet variations. 

To get a feeling for this result, con•'ider the perfect plasticity 
limit n --• oo. For a length of 2000 km and a shear stress of % 
of 1 to 0.5 bar the height is 4.8 to 3.4 km [Weertman, 1964]. 
Remembering that the height is porp0rtional to the square 
root of the length, the above-used length of 1000 km requires 
a height of 3.4 to 2.4 km in the perfect plasticity case. The as- 
sumed height of 1 km belongs to a shear stress lower than %, 
and therefore the flow essentially stops which explains the 
large time scale 0f 614000 years in the case n = 3. 

Fig. 3. Plots of GO/) and g0/) versus •/and geometrical interpretation 
of the relation between •/and •. 

height equal to 1. Insertion in to (6) yields 

OG 1 b( 2n+ 1}" t 0-•-= 3n +• • •/G + • (27) n+l 

Here O/Oh O/b•I denote differentiation for fixed •/resp. t. Of 
course the similarity solution G(t, 7) = g(•) solves (27). 

In linear perturbation theory, G is to be considered as g plus 
a small perturbation. For the following it is useful to consider 
simultaneously a perturbation of g and of the horizontal vail- 
able •/(cf. Figure 3): 

•/= [1 + e(t, •)1• (28) 

G(t, ;/) = [1 + e(t, •)]g(•) (29) 

Usually a point of the perturbed solution is determined by an 
expansion around a reference point with the same horizontal 
coordinate. However, the reference solution is a distribution 
which is bounded in horizontal direction with vertical tan- 
gents at the boundary and the expansions up to first order 
around reference points, which are on or outside the bound- 
ary are not meaningful. The representation (28) and (29) 
avoids this difficulty by relating any point with nonvanishing 
height of the perturbed solution to a point with nonvanishing 
height of the reference solution such that the boundaries 
match. 

An expansion of (27) up to first order in e yields (cf. Appen- 
dix 1) 

0 

t • e = • (30) 
where • is a linear differential operator and o/or denotes dif- 
ferentiation with • fixed. To guarantee the regularity of (28) 
and (29) one has to require (cf. Appendix 1) 

0 

•(•e) < 1 (31) 
5. LINEARIZATION OF THE EQUATION OF MOTION 

I consider any solution h of (6) which is in the vicinity of 
the similarity solution (11)-(14). It is useful for the per- 
turbation theory around this solution to define a function G 
by 

h-- dr•V f(t)•t, •1) (26) 

V, ,/, a, and f are as in section 3. EquatiOn (26) represents a 
rescaling such that the reference solution has half length and 

6. SPECTRAL ANALYSIS 

The eigenfunctions of • under the boundary condition 
(31) and the corresponding eigenvalues are calculated in Ap- 
pendix 2. The functions are either symmetric (s) or anti- 
symmetric (a) with respect to •, 

1 •n2-n-1 n ) Es, k • } n (n + 1)(2n + 1) + k,-k, (32) n+l ;z 
1-z 2n+ 1 
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Fig. 4. Plots of the similarity solution and of deviations from it which represent eigenfunctions of the linearized equa- 
tion of motion, where length and height are rescaled by time dependent factors such that the rescaled similarity solution 
becomes constant in time, extends from -1 to + 1 in horizontal direction, and has maximal height 1. SYM = +1 corre- 
sponds to the symmetric and antisymmetric case, respectively, and K (=k) = 0 ... 4 denotes the number of the eigenfunc- 
tion. (a) N (--n) -- 1 which describes a Newtonian fluid; (b) N -- 3 is the generally accepted value for the exponent in 
Glen's 1tow law. The eigenfunctions are unique up to an arbitrary factor FAC which is chosen to achieve amplitudes of 
suitable height for the figures. 
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Fig. 4b 
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11070 HALFAR.' ICE-SHEET DYNAMICS 

"-( }F[(n+l)(2n+l)+k'-k' 1-Z2n+' 1 

z = •,+n)/n 0 < • < 1 

k=0, 1,2-.. 

n+ 1 ;z (33) 

(34) 

where F(a, b, c; z) is the Hypergeometric Function [Smirnow, 
1970]. The corresponding eigenvalues of.• are 

n2--n -- 1 } (n + !)(2n + 1) k k + (35) IZ,,•, = - n(3n + 2) (n + 1)(2n + 1) 

(n + 1)(2n + 1) k + n k + , (36) l•'•a' = - n(3n + 2) 2n + 1 n + 1 

The time evolution of the eigenmodes is then (cf. (30)): 

modes. 

Mode Number -(3n + 2)/• 

s,k=O 0 
a,k=O 1 
s,k-- 1 3n+ 2 

In the case n -- 3, the relative decrease of the third mode is al- 
ready 11 times larger than the relative increase of the cap's 
length. For higher mode numbers k, this factor grows roughly 
with the square of k (cf. (35) and (36)). 

The Hypergeometric Functions occurring in (32) and (33) 
are proportional to the Jacobi polynomials Gk(p, q, z) [Abra- 
omowitz and Stegun, 1970], where 

Symmetric case 

(n 2- n- 1) 
(n + 1)(2n + 1) 

(37) q (n + 1) 

t l •a.k ß %1 eaa, (38) 

Antisymmetric case 

Figure 4 shows plots of the similarity solution and of devia- 
tions from it that represent eigenfunctions of the linearized 
equation of motion. 

7. DISCUSSION 

All eigenvalues of.• except the first, which is zero, are neg- 
ative and have been ordered in the sequence 

'" •-•a,l < •-•s,l < •-•a,0 < •-•s,0 '" 0 (39) 

Therefore, all the excitations, except the lowest one, approach 
zero as time approaches infinity. Since the volume of these ex- 
citations must then also approach zero, this is compatible with 
the conservation of the total volume only if the volume of all 
eigenmodes except the first one vanishes, which is indeed the 
case. This implies that the ice cap solution is asymptotically 
stable with respect to all perturbations that leave the total vol- 
ume invariant. 

The three lowest modes can be generated from the ice cap 
solution (7) and (11)-(14) by infinitesimal displacements in 
volume, space and time, respectively. They are displayed in 
Figure 4. 

To find a measure for the decrease of the eigenmodes dur- 
ing theft time evolution, the relative chang,: de/e can be re- 
lated to the relative change dR/R of the cap's half length R. 
Putting 1 = • = Rf(O/ • equation (12) yields 

dR df 1 dt 
..... (40) 

R f (3n + 2) t 

and thus (cf. (30)) 

R & =(3n+2) t 0e • e OR •- -•- = (3n + 2) -- (41) 

If/• is the eigenvalue of e then the relative decrease -de/e is 
-(3n + 2)/z times larger than the relative increase dR/R of the 
half length R. Th• ratio is given below for the three lowest 

(42) 

(n 2 + 3n + 1) 
P -- (n + 1)(2n + 1) 

(n + 2) (43) 
q-- (n+ 1) 

They are orthogonal with respect to the weight function 

w(z) ----' (1 -- zy--q•/--1 (44) 

and can be normalized 

u• = h•-'/26• (45) 

' dz w(z)u,(z)u•,(z) = 8, a, (46) 

k! r(k + q)r(k + p)r(k + p - q + 1) 
h•, = (2k + p)r:(2k + p) (47) 

where 

Any function •(z) in 0 < z < I can be expanded with respect 
to the u•, in the form 

(48) oo /1 a,(z) = u,gz) dz'w(z')u,gz')a,(z') 
k--O 

8. CONCLUSION 

The equation of motion (6) for the time evolution of an ice 
cap has a similarity solution. The solution describes an ice cap 
of finite extent that grows in length and shrinks in height and 
is asymptotically stable with respect to all perturbations which 
leave the volume invariant. 

Higher perturbation modes are damped strongly. There- 
fore, in practical calculations it will be sufficient to take only a 
few of the lowest modes into account. 

APPENDIX 1 

Consider the transformation 

n -- [1 + e(o, 0]• t--o (A1) 
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HALFAR: ICE-SHEET DYNAMICS 11071 

Its functional matrix is 

+ 0 
-_ 1 (A2) 

The following condition guarantees the regularity of this 
transformation: 

0 

From (A2) follows up to first order in •: 

(A3) 

(A4) 

O Ii_O 1O (A5) 
Insertion of (A l), (A4), and (A5) and (29) into (27) gives the 
equation of linear perturbation theory for e(o, 0: 

e -n e •g(•) 
o •oo [g(•) - •g'(•)] e - 3n + 2 O• •(•)e + 

ß [g(0- •"(0] •' (A6) 
After division by g - •g', one arrives at (30) with e/co = e/at 
at • fixed. 

APPENDIX 2 

To write (A6) in standard form, I use the transformations 

z -- •+"/" 0 < • < I (A7) 

n 2n + I ] z) (-"-ø/ø-"+ (A8) •=e(g-•g')-2n+l n z (l- 
Only the region • > 0 is considered. Owing to the symmetry 
g(•) -- g(-•), it will be clear how e has to be continued into the 
region • < 0. The spectral parameter/• is defined through 

o • • =/• • (A9) 
Then (A6) is equivalent to 

g• (2n + 1) •- + (n + 1)2 n } 03 0 - z(z - 1) • + (2n + l)(n + 1) z - n+ I Oz 

n n(3n + 2) + 2n + 1 + (n + 1)(2n + 1)/• • (A 10) 
This is the Hypergeometric Differential Equation [Smirnow, 
1970]. The condition (A3) means 

2n+l l+•z z (1 

(All) 

The roots of the corresponding fundamental equation at 
z = 0, 1, oo, respectively, are 

(AI2) 
1 

0{2-- 
n+l 

3n 2 + 3n + 1 

Y'"- = 2(n + l)(2n + 1) 

•l-'O 
(A13) 

n+l 

fi•- -- 2n + 1 
I 3n •- + 3n + 

+ • (n+l)(2n+• 

-4 n(n+l)+n(3n+2)l•)} '/•- (n + 1)(2n + 1) (A14) 
and any solution of (A 10) can be represented in the neighbor- 
hoods ofz=0andz= lby 

• = z'"' w,(z) + z'": w•(z) (AI5) 

-- (z - l)" w(z) + (z - w(z) (A 16) 

where the wi are analytic at z -- 0,1, respectively. The relations 
(All), (AI3), and (AI6) imply 

w3 '- 0 (A 17) 

and from (AI2) and (AI5) one concludes 

Symmetric case 
w2 -- 0 (A18) 

Antisymmetric case 
w• = 0 (A 19) 

Therefore, (z - l)-e: z -•' • and (z - 1)-e: z -•: • are analytic in 
the entire complex plane for the symmetric and antisymmetric 
case, respectivelyß 

The set of solutions of (A 10) is denoted by the symbol 

0 I oo 

P 0{• fi• y, z (A20) 

and in the sets [Abramowitz and Stegun, 1970] 

Symmetric case 

(z- 1)-•:z -•' P 

=p 

and 

Antisymmetric case 

0 

(z-1)-/•:z-•: P 0{, 
0{2 

I oo 

/•2 'Y2 

z (A21) 

--p 

0 I oo 

0 0 Y2 + 0{2 +/•2 

(A22) 

one has to find an element which is analytic in the entire com- 
plex plane. The required functions are the Hypergeometric 
Functions F(a, b, c; z) where [Abramowitz and Stegun, 1970] 
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Symmetric case 

Antisymmetric case 

a, b -- ¾,,2 + a, + fi2 
(A23) 

C • 1 +a•--a2 

a, b -- ¾•,2 + a2 + 
(A24) 

c-• 1 - oh + or2 

and b (or a, notice the symmetry of the results in a,b) has to be 
a nonpositive integer -k, which means (cf. (AI2)-(A14), 
(A23), and (A24)) 

Symmetric case 

n2-n - 1 

a = (n + 1)(2n + 1) + k 
b • --k (A25) 

n+l 

Antisymmetric case 

n2+ 3n + 1 

(n + 1)(2n + 1) 

b=-k 

+k 

(A26) 

n+2 
c = 

n+l 

The eigenvalues # are calculated from (A12)-(A14), (A23)- 
(A26) as 

(n+l)(2n+l) { n2-n-I } (A27) #s.k -- - n(3n + 2) k k + (n + 1)(2n + 1)' 
(n + 1)(2n + 1) n k + n(3n + 2) k + 2n + 1 n + 1 (A28) 

•4cknowledgment. I thank K. Hasselmann for his many criticisms 
and discussions. E. Maier-Reimer was also very helpful in my work 
with the computer. 

REFERENCES 

Abramowitz, M., and I. A. Stegun (Eds.), Handbook of Mathematical 
Functions, pp. 564, 777, 779, Dover, New York, 1970. 

Andrews, J. T., Glacial Systems, p. 36, Duxbury, North Scituate, 
Mass., 1975. 

Hays, J. D., J. Imbrie, N.J. Shackleton, Variations in the earth's or- 
bit: Pacemaker of the ice ages, Science, 194, 1121, 1976. 

Imbrie, J., and J. Z. Imbrie, Modelling the climatic response to orbital 
variations, Science, 207, 943, 1980. 

Kiil16n, E., C. Crafoord, and M. Ghil, Free oscillations in a climate 
model with ice sheet dynamics, J. Atmos. Sci., 36, 2292, 1979. 

Mahaffy, M. W., A three-dimensional numerical model of ice sheets: 
Tests on the barnes ice cap, Northwest Territories, J. Geophys. Res., 
81, 1059, 1976. 

Nye, J. F., The mechanics of glacier flow, J. Glaciol., 2, 82, 1952. 
Nye, J. F., The distribution of stress and velocity in glaciers and ice 

sheets, Proc. R. Soc. London, Ser. A, 239, 113, 1957. 
Nye, J. F., Plasticity solution for a glacier snout, J. Glaciol., 6, 695, 

1967. 

Ocrlemans, J., A simple model of stochastically driven ice sheet with 
planetary wave feedback, Tellus, 31, 469, 1979. 

Paterson, W. S. B., The Physics of Glaciers, p. 195, Pergamon, New 
York, 1969. 

Rooth, C. G. H., C. Emiliani, and H. W. Poor, Climate response to 
astronomical forcing, Earth Planet. Sci. Lett., 41, 387, 1978. 

Smirnow, W. I., Lehrgang der h6heren Mathematik, III/2, p. 316, 
VEB Deutscher Verlag d. Wiss., Berlin, 1970. 

Weertman, J., Traveling waves on glaciers, paper presented at 
Chamonix Symposium, International Union of Geodesy and Geo- 
physics, International Association of Scientific Hydrology, Septem- 
ber 16-24, 1958. 

Weertman, J., Rate of growth and shrinkage of nonequilibrium ice 
sheets, J. Glaciol., 5, 145, 1964. 

(Received February 18, 1981; 
revised July 6, 1981; 

accepted July 7, 1981.) 

 21562202c, 1981, C
11, D

ow
nloaded from

 https://agupubs.onlinelibrary.w
iley.com

/doi/10.1029/JC
086iC

11p11065 by M
PI 348 M

eteorology, W
iley O

nline L
ibrary on [09/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense


